Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Colloids Surf B Biointerfaces ; 237: 113875, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547795

RESUMO

Melanoma is responsible for more than 80% of deaths related to skin diseases. Ibrutinib (IBR), a Bruton's tyrosine kinase inhibitor, has been proposed to treat this type of tumor. However, its low solubility, extensive first-pass effect, and severe adverse reactions with systemic administration affect therapeutic success. This study proposes developing and comparing the performance of two compositions of nanostructured lipid carriers (NLCs) to load IBR for the topical management of melanomas in their early stages. Initially, the effectiveness of IBR on melanoma proliferation was evaluated in vitro, and the results confirmed that the drug reduces the viability of human melanoma cells by inducing apoptosis at a dose that does not compromise dermal cells. Preformulation tests were then conducted to characterize the physical compatibility between the drug and the selected components used in NLCs preparation. Sequentially, two lipid compositions were used to develop the NLCs. Formulations were then characterized and subjected to in vitro release and permeation tests on porcine skin. The NLCs containing oleic acid effectively controlled IBR release over 24 h compared to the NLCs composed of pomegranate seed oil. Furthermore, the nanoparticles acted as permeation enhancers, increasing the fluidity of the lipids in the stratum corneum, as determined by EPR spectroscopy, which stimulated the IBR penetration more profoundly into the skin. However, the NLCs composition also influenced the permeation promotion factor. Thus, these findings emphasize the importance of the composition of NLCs in controlling and increasing the skin penetration of IBR and pave the way for future advances in melanoma therapy.


Assuntos
Adenina/análogos & derivados , Melanoma , Nanopartículas , Nanoestruturas , Piperidinas , Animais , Suínos , Humanos , Melanoma/tratamento farmacológico , Portadores de Fármacos/química , Pele , Nanoestruturas/química , Nanopartículas/química , Lipídeos/química , Tamanho da Partícula
2.
Clin. transl. oncol. (Print) ; 26(1): 69-84, jan. 2024.
Artigo em Inglês | IBECS | ID: ibc-229147

RESUMO

Colorectal cancer (CRC) is one of the most common tumours worldwide, and 70% of CRC patients are over 65 years of age. However, the scientific evidence available for these patients is poor, as they are underrepresented in clinical trials. Therefore, a group of experts from the Oncogeriatrics Section of the Spanish Society of Medical Oncology (SEOM), the Spanish Cooperative Group for the Treatment of Digestive Tumours, (TTD) and the Multidisciplinary Spanish Group of Digestive Cancer (GEMCAD) have reviewed the scientific evidence available in older patients with CRC. This group of experts recommends a multidisciplinary approach and geriatric assessment (GA) before making a therapeutic decision because GA predicts the risk of toxicity and survival and helps to individualize treatment. In addition, elderly patients with localized CRC should undergo standard cancer resection, preferably laparoscopically. The indication for adjuvant chemotherapy (CT) should be considered based on the potential benefit, the risk of recurrence, the life expectancy and patient comorbidities. When the disease is metastatic, the possibility of radical treatment with surgery, radiofrequency (RF) or stereotactic body radiation therapy (SBRT) should be considered. The efficacy of palliative CT is similar to that seen in younger patients, but elderly patients are at increased risk of toxicity. Clinical trials should be conducted with the elderly population and include GAs and specific treatment plans (AU)


Assuntos
Humanos , Idoso , Neoplasias Colorretais/tratamento farmacológico , Antineoplásicos/administração & dosagem , Serviços de Saúde para Idosos
5.
Clin Transl Oncol ; 26(1): 69-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37498507

RESUMO

Colorectal cancer (CRC) is one of the most common tumours worldwide, and 70% of CRC patients are over 65 years of age. However, the scientific evidence available for these patients is poor, as they are underrepresented in clinical trials. Therefore, a group of experts from the Oncogeriatrics Section of the Spanish Society of Medical Oncology (SEOM), the Spanish Cooperative Group for the Treatment of Digestive Tumours, (TTD) and the Multidisciplinary Spanish Group of Digestive Cancer (GEMCAD) have reviewed the scientific evidence available in older patients with CRC. This group of experts recommends a multidisciplinary approach and geriatric assessment (GA) before making a therapeutic decision because GA predicts the risk of toxicity and survival and helps to individualize treatment. In addition, elderly patients with localized CRC should undergo standard cancer resection, preferably laparoscopically. The indication for adjuvant chemotherapy (CT) should be considered based on the potential benefit, the risk of recurrence, the life expectancy and patient comorbidities. When the disease is metastatic, the possibility of radical treatment with surgery, radiofrequency (RF) or stereotactic body radiation therapy (SBRT) should be considered. The efficacy of palliative CT is similar to that seen in younger patients, but elderly patients are at increased risk of toxicity. Clinical trials should be conducted with the elderly population and include GAs and specific treatment plans.


Assuntos
Neoplasias Colorretais , Humanos , Idoso , Neoplasias Colorretais/tratamento farmacológico , Quimioterapia Adjuvante/efeitos adversos
6.
Front Nutr ; 10: 1252815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075221

RESUMO

Background: Breast milk is a complex and dynamic fluid needed for infant development and protection due to its content of bioactive factors such as immunoglobulins (Igs). Most studies focus primarily on IgA, but other types of Ig and even other immune components (cytokines and adipokines) may also play significant roles in neonatal health. As a first step, we aimed to characterize the Ig profile, many cytokines, and two adipokines (leptin and adiponectin) at two sampling time points within the transitional stage, which is the least studied phase in terms of these components. The secondary objective was to identify different breast milk immunotypes in the MAMI cohort substudy, and finally, we further aimed at analyzing maternal and infant characteristics to identify influencing factors of breast milk immune composition. Methods: Breast milk samples from 75 mothers were studied between days 7 and 15 postpartum. The Igs, cytokines, and adipokine levels were determined by a multiplex approach, except for the IgA, IgM, and leptin that were evaluated by ELISA. Results: IgA, IgM, IgE, IgG2, IL-1ß, IL-5, IL-6, IL-10, and IL-17 were significantly higher on day 7 with respect to day 15. The multiple factor analysis (MFA) allowed us to identify two maternal clusters (immunotypes) depending on the breast milk immune profile evolution from day 7 to day 15, mainly due to the IgE and IgG subtypes, but not for IgA and IgM, which always presented higher levels early in time. Conclusion: All these results demonstrated the importance of the dynamics of the breast milk composition in terms of immune factors because even in the same lactation stage, a difference of 1 week has induced changes in the breast milk immune profile. Moreover, this immune profile does not evolve in the same way for all women. The dynamic compositional changes may be maternal-specific, as we observed differences in parity and exclusive breastfeeding between the two BM immunotype groups, which could potentially impact infant health.

7.
J Fungi (Basel) ; 9(8)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37623625

RESUMO

BACKGROUND: The treatment of paracoccidioidomycosis (PCM) is a challenge, and the discovery of new antifungal compounds is crucial. The phenacylideneoxindoles exhibited promising antifungal activity against Paracoccidioides spp., but their mode of action remains unknown. METHODS: Through proteomic analysis, we investigated the effects of (E)-3-(2-oxo-2-phenylethylidene)indolin-2-one on P. brasiliensis. In addition, we investigated the metabolic alterations of P. brasiliensis in response to the compound. Furthermore, the effects of the compound on the membrane, ethanol production, and reactive oxygen species (ROS) production were verified. RESULTS: We identified differentially regulated proteins that revealed significant metabolic reorganization, including an increase in ethanol production, suggesting the activation of alcoholic fermentation and alterations in the rigidity of fungal cell membrane with an increase of the ergosterol content and formation of ROS. CONCLUSIONS: These findings enhance our understanding of the mode of action and response of P. brasiliensis to the investigated promising antifungal compound, emphasizing its potential as a candidate for the treatment of PCM.

8.
Pathogens ; 12(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37623972

RESUMO

For decades, only two nitroheterocyclic drugs have been used as therapeutic agents for Chagas disease. However, these drugs present limited effectiveness during the chronic phase, possess unfavorable pharmacokinetic properties, and induce severe adverse effects, resulting in low treatment adherence. A previous study reported that N-(cyclohexylcarbamothioyl) benzamide (BTU-1), N-(tert-butylcarbamothioyl) benzamide (BTU-2), and (4-bromo-N-(3-nitrophenyl) carbamothioyl benzamide (BTU-3) present selective antiprotozoal activity against all developmental forms of Trypanosoma cruzi Y strain. In this study, we investigated the mechanism of action of these compounds through microscopy and biochemical analyses. Transmission electron microscopy analysis showed nuclear disorganization, changes in the plasma membrane with the appearance of blebs and extracellular arrangements, intense vacuolization, mitochondrial swelling, and formation of myelin-like structures. Biochemical results showed changes in the mitochondrial membrane potential, reactive oxygen species content, lipid peroxidation, and plasma membrane fluidity. In addition, the formation of autophagic vacuoles was observed. These findings indicate that BTU-1, BTU-2, and BTU-3 induced profound morphological, ultrastructural, and biochemical alterations in epimastigote forms, triggering an autophagic-dependent cell death pathway.

9.
Future Microbiol ; 18: 1077-1093, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37424510

RESUMO

Aim: To access the metabolic changes caused by a chalcone derivative (LabMol-75) through a proteomic approach. Methods: Proteomic analysis was performed after 9 h of Paracoccidioides brasiliensis yeast (Pb18) cell incubation with the LabMol-75 at MIC. The proteomic findings were validated through in vitro and in silico assays. Results: Exposure to the compound led to the downregulation of proteins associated with glycolysis and gluconeogenesis, ß-oxidation, the citrate cycle and the electron transport chain. Conclusion: LabMol-75 caused an energetic imbalance in the fungus metabolism and deep oxidative stress. Additionally, the in silico molecular docking approach pointed to this molecule as a putative competitive inhibitor of DHPS.


Assuntos
Paracoccidioides , Paracoccidioidomicose , Paracoccidioides/metabolismo , Proteômica , Simulação de Acoplamento Molecular , Estresse Oxidativo , Oxirredução , Paracoccidioidomicose/microbiologia
10.
Med Sci Monit ; 29: e940450, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37403342

RESUMO

BACKGROUND Qigong, an ancient health preservation technique forming part of Traditional Chinese Medicine, combines slow body movements, breathing, and meditation. While this meditative movement system has been reported to offer various physical and psychological benefits, studies on the Taoist school of qigong are sparse. This study, therefore, aimed to investigate the effects of Taoist qigong on white blood cells and other immune parameters in healthy individuals. MATERIAL AND METHODS Thirty-eight participants were recruited for the study, with 21 assigned to the experimental group and 17 to the control group. Participants in the experimental group engaged in a four-week Taoist qigong program. Blood samples for immune parameter quantification, including leukocyte count, neutrophil, eosinophil, basophil, lymphocyte, and large unstained cell (LUC) counts, as well as concentrations of IgG, IgA, IgM, C3, and C4, were collected one day before the experiment started and one day after it ended. RESULTS Post-program, the experimental group exhibited significantly lower total leukocyte counts, and reduced numbers of lymphocytes and LUCs. Additionally, a higher percentage of monocytes was noted in this group. CONCLUSIONS Taoist qigong practice induced a distinct immunomodulatory profile, characterized by decreased counts of several white blood cell parameters and increased percentages of certain agranulocytes. This outcome presents intriguing implications from a psychobiological perspective and highlights the need for further research into the immune effects of Taoist mind-body practice.


Assuntos
Exercícios Respiratórios , Imunomodulação , Leucócitos , Qigong , Humanos , Imunidade , Medicina Tradicional Chinesa , Qigong/métodos , Respiração , Voluntários Saudáveis
11.
Front Microbiol ; 14: 1040671, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960287

RESUMO

Introduction: Cryptococcus neoformans is one of the leading causes of invasive fungal infections worldwide. Cryptococcal meningoencephalitis is the main challenge of antifungal therapy due to high morbidity and mortality rates, especially in low- and middle-income countries. This can be partly attributed to the lack of specific diagnosis difficulty accessing treatment, antifungal resistance and antifungal toxicity. Methods: In the present study, the effect of the synthetic thiourea derivative N-(butylcarbamothioyl) benzamide (BTU-01), alone and combined with amphotericin B (AmB), was evaluated in planktonic and sessile (biofilm) cells of C. neoformans. Results: BTU-01 alone exhibited a fungistatic activity with minimal inhibitory concentrations (MICs) ranging from 31.25 to 62.5 µg/mL for planktonic cells; and sessile MICs ranging from 125.0 to 1000.0 µg/mL. BTU-01 caused a concentration-dependent inhibitory activity on cryptococcal urease and did not interfere with plasma membrane fluidity. Molecular docking was performed on Canavalia ensiformis urease, and BTU-01 showed relevant interactions with the enzyme. The combination of BTU-01 and AmB exhibited synergistic fungicidal activity against planktonic and sessile cells of C. neoformans. Microscopic analysis of C. neoformans treated with BTU-01, alone or combined with AmB, revealed a reduction in cell and capsule sizes, changes in the morphology of planktonic cells; a significant decrease in the number of cells within the biofilm; and absence of exopolymeric matrix surrounding the sessile cells. Neither hemolytic activity nor cytotoxicity to mammalian cells was detected for BTU-01, alone or combined with AmB, at concentrations that exhibited antifungal activity. BTU-01 also displayed drug-likeness properties. Conclusion: These results indicate the potential of BTU-01, for the development of new strategies for controlling C. neoformans infections.

12.
J Biomol Struct Dyn ; 41(12): 5685-5695, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35787240

RESUMO

Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to characterize the interactions of amphotericin B (AmB), miltefosine (MIL) and nerolidol (NER) with the plasma membrane of Paracoccidioides brasiliensis. Spin-labeled analogs of stearic acid and steroid androstane distributed into the plasma membrane of the fungus treated with AmB, showed strong interactions with putative AmB/sterol complexes. The observed increase in the EPR parameter 2A// caused by AmB can be interpreted as a remarkable reduction in the spin label mobility and/or an increase in the local polarity. The 2A// parameter reduced gradually as the concentration of MIL and NER increased. The membrane-water partition coefficient (KM/W) of the three compounds under study was estimated based on the minimum concentration of the compounds that causes a change in EPR spectrum. The KM/W values indicated that the affinity of the compounds for the P. brasiliensis membrane follows the order: AmB > MIL > NER. The minimum inhibitory concentration (MIC) values were lower than the respective minimum concentrations of the compounds to cause a change in the EPR spectrum, being ∼3.5-fold lower for AmB, 3.9-fold for MIL and ∼1.4-fold for NER. Taken together, the EPR spectroscopy results suggest that the anti-proliferative effects of the three compounds studied are associated with alterations in cell membranes. One of the most likely consequences of these changes would be electrolyte leakage.Communicated by Ramaswamy H. Sarma.


Assuntos
Anfotericina B , Paracoccidioides , Espectroscopia de Ressonância de Spin Eletrônica , Anfotericina B/farmacologia , Anfotericina B/metabolismo , Membrana Celular/metabolismo , Marcadores de Spin
13.
Chaos Solitons Fractals ; 164: 112671, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36091637

RESUMO

The level of unpredictability of the COVID-19 pandemics poses a challenge to effectively model its dynamic evolution. In this study we incorporate the inherent stochasticity of the SARS-CoV-2 virus spread by reinterpreting the classical compartmental models of infectious diseases (SIR type) as chemical reaction systems modeled via the Chemical Master Equation and solved by Monte Carlo Methods. Our model predicts the evolution of the pandemics at the level of municipalities, incorporating for the first time (i) a variable infection rate to capture the effect of mitigation policies on the dynamic evolution of the pandemics (ii) SIR-with-jumps taking into account the possibility of multiple infections from a single infected person and (iii) data of viral load quantified by RT-qPCR from samples taken from Wastewater Treatment Plants. The model has been successfully employed for the prediction of the COVID-19 pandemics evolution in small and medium size municipalities of Galicia (Northwest of Spain).

14.
Sci Total Environ ; 849: 157867, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35944624

RESUMO

Assessing the carbon footprint of marine bivalve aquaculture demands an accurate estimation of the CO2 release associated to capital goods and aquaculture operations but also to the metabolic CO2 budget of the cultured species. Nowadays, there are discrepancies on the processes to include in that budget, how to estimate them, and which scale should be applied, from individual to ecosystem. Site-specific environmental conditions and culture methods also affect significantly the estimates. Here, we have gathered environmental, biochemical and metabolic data from published scientific articles, reports and existing databases to present the metabolic CO2 budget for mussel aquaculture in the coastal inlets of the Northwest Iberian upwelling. We analyse the contribution of mussel flesh and shell production jointly and separately. At the individual scale, the shell CO2 budget is estimated from CO2 removal by shell matrix protein synthesis and CO2 release during calcification and respiration to support shell maintenance. Organic carbon in mussel flesh and CO2 released by respiration to support flesh maintenance contribute to the flesh CO2 budget. Only calcification and respiration processes are considered when estimating the metabolic carbon footprint of individual mussels because organic carbon in mussel flesh and shell returns to the atmosphere as CO2 in a relatively short period. While the metabolic carbon footprint associated to mussel shell remains constant at 365 kg CO2 per ton of shell, it varies from 92 to 578 kg CO2 per ton of mussel flesh. This large variability depends on mussel seeding time and harvesting size, due to the differential seasonal growth patterns of flesh and shell. Inclusion of the CO2 potentially immobilised in mussel faeces buried in the sediments would lead to a reduction of the metabolic carbon footprint estimates by up to 6 % compared with the individual estimates.


Assuntos
Bivalves , Ecossistema , Animais , Aquicultura , Carbono , Dióxido de Carbono
15.
Environ Manage ; 70(6): 965-977, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36038650

RESUMO

Habitat loss is one of the most important threats to biodiversity; it alters the habitat connectivity of species and is among the main causes of the global amphibian extinction crisis. Identifying the potential areas of distribution and connectivity of species is of the utmost importance so that informed decisions can be made for the conservation of vulnerable amphibian populations. In this study, we performed species distribution models and used circuit theory to model omnidirectional connectivity for two plethodontid salamanders of conservation concern distributed in the forests of Chiapas, Mexico, and Guatemala (Bolitoglossa franklini and Bolitoglossa lincolni). Potential distribution maps show an affinity for well-preserved montane forests for both species. Likewise, we found that the niches of the species are not similar. The connectivity models show that the main areas of connectivity are in the Meseta Central de Chiapas, Sierra Madre de Chiapas, and the Cordillera Volcánica Guatemalense, in this last range, important areas of connectivity were located, as well as least-cost paths and barriers to the movement of both species. We identified that important areas of climatic suitability and connectivity are not within the protected natural areas and may be threatened by the increasing influence of anthropogenic activities. The results of our study show the importance of preserving the regional forests to ensure the persistence of species with arboreal habits and high sensitivity to habitat transformation, as well as to recognize and prioritize potential areas for management and protection in both southern Mexico and Guatemala.


Assuntos
Conservação dos Recursos Naturais , Urodelos , Animais , Conservação dos Recursos Naturais/métodos , México , Guatemala , Biodiversidade , Ecossistema
16.
J Proteomics ; 266: 104683, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35835316

RESUMO

Paracoccidioides spp. are the etiological agent of paracoccidioidomycosis, a disease that causes skin lesions and affect the lungs and other organs. The current management of the disease is long and has several side effects that often lead the patient to give up the treatment, sequelae and even death. The search for new forms of treatment that minimize these drawbacks is very important. Thus, natural compounds are targets of great interest. Curcumin is one of the main components of the tubers of Curcuma longa, presenting medicinal effects well described in the literature, including the antifungal effect on Paracocidioides brasiliensis. Nevertheless, the mechanisms related to the antifungal effect of such compound are still unknown, so the objective of the present research is to understand what changes occur in the metabolism of P. brasiliensis after exposure to curcumin and to identify the main targets of the compound. Proteomic analysis as based on nanoUPLC-MS analysis and the functional classification of the identified proteins. The main metabolic processes that were being regulated were biologically validated through assays such as fluorescence microscopy, EPR and phagocytosis. Proteomic analysis revealed that curcumin regulates several metabolic processes of the fungus, including important pathways for energy production, such as the glycolytic pathway, beta oxidation and the glyoxylate cycle. Protein synthesis was down-regulated in fungi exposed to curcumin. The electron transport chain and the tricarboxylic acid cycle were also down-regulated, indicating that both the mitochondrial membrane and the mitochondrial activity were compromised. Plasma membrane and cell wall structure were altered following exposure to the compound. The fungus' ability to survive the phagocytosis process by alveolar macrophages was reduced. Thus, curcumin interferes with several metabolic pathways in the fungus that causes paracoccidioidomycosis. BIOLOGICAL SIGNIFICANCE: The challenges presented by the current treatment of paracoccidioidomycosis often contributing to patients' withdrawal from treatment, leading to sequelae or even death. Thus, the search for new treatment options against this disease is growing. The discovery that curcumin is active against Paracoccidioides was previously reported by our study group. Here, we clarify how the compound acts on the fungus causing its growth inhibition and decreased viability. Understanding the mechanisms of action of curcumin on P. brasiliensis elucidates how we can seek new alternatives and which metabolic pathways and molecular targets we should focus on in this incessant search to bring the patient a treatment with fewer adverse effects.


Assuntos
Curcumina , Paracoccidioides , Paracoccidioidomicose , Antifúngicos/farmacologia , Curcumina/farmacologia , Humanos , Paracoccidioides/metabolismo , Paracoccidioidomicose/tratamento farmacológico , Paracoccidioidomicose/metabolismo , Paracoccidioidomicose/microbiologia , Proteômica
17.
Biochim Biophys Acta Biomembr ; 1864(9): 183977, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35654148

RESUMO

Spin label electron paramagnetic resonance (EPR) spectroscopy was used to study the mechanisms of action of ivermectin and curcumin against Leishmania (L.) amazonensis promastigotes. EPR spectra showed that treatment of the parasites with both compounds results in plasma membrane rigidity due to oxidative processes. With the IC50 and EPR measurements for assays using different parasite concentrations, estimations could be made for the membrane-water partition coefficient (KM/W), and the concentration of the compound in the membrane (cm50) and in the aqueous phase (cw50), which inhibits cell growth by 50%. The KM/W values indicated that ivermectin has a greater affinity than curcumin for the parasite membrane. Therefore, the activity of ivermectin was higher for experiments with low cell concentrations, but for concentrations greater than 1.5 × 108 parasites/mL the compounds did not show significantly different results. The cm50 values indicated that the concentration of compound in the membrane leading to growth inhibition or membrane alteration is approximately 1 M for both ivermectin and curcumin. This high membrane concentration suggests that many ivermectin molecules per chlorine channel are needed to cause an increase in chlorine ion influx.


Assuntos
Antiprotozoários , Curcumina , Leishmania mexicana , Leishmania , Antiprotozoários/química , Antiprotozoários/farmacologia , Membrana Celular/metabolismo , Curcumina/metabolismo , Curcumina/farmacologia , Ivermectina/análise , Ivermectina/metabolismo , Ivermectina/farmacologia , Estresse Oxidativo
18.
Sci Total Environ ; 833: 155140, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35421481

RESUMO

This study presents the results of SARS-CoV-2 surveillance in sewage water of 11 municipalities and marine bioindicators in Galicia (NW of Spain) from May 2020 to May 2021. An integrated pipeline was developed including sampling, pre-treatment and biomarker quantification, RNA detection, SARS-CoV-2 sequencing, mechanistic mathematical modeling and forecasting. The viral load in the inlet stream to the wastewater treatment plants (WWTP) was used to detect new outbreaks of COVID-19, and the data of viral load in the wastewater in combination with data provided by the health system was used to predict the evolution of the pandemic in the municipalities under study within a time horizon of 7 days. Moreover, the study shows that the viral load was eliminated from the treated sewage water in the WWTP, mainly in the biological reactors and the disinfection system. As a result, we detected a minor impact of the virus in the marine environment through the analysis of seawater, marine sediments and, wild and aquacultured mussels in the final discharge point of the WWTP.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Biomarcadores Ambientais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Prevalência , RNA Viral , Esgotos , Águas Residuárias , Água
19.
Biochim Biophys Acta Biomembr ; 1864(5): 183872, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35085568

RESUMO

Spin label electron paramagnetic resonance (EPR) spectroscopy was used to characterize the components of the Mycobacterium abscessus massiliense cell envelope and their interactions with amphotericin B (AmB), miltefosine (MIL), and nerolidol (NER). Spin labels analogous to stearic acid and phosphatidylcholine (PC) were distributed on an envelope layer with fluidity comparable to other biological membranes, probably the mycobacterial cell wall, because after treatment with AmB a highly rigid spectral component was evident in the EPR spectra. Methyl stearate analogue spin labels found a much more fluid membrane and did not detect the presence of AmB, except for at very high drug concentrations. Unlike other spin-labeled PCs, the TEMPO-PC spin probe, with the nitroxide moiety attached to the choline of the PC headgroup, also did not detect the presence of AmB. On the other hand, the steroid spin labels were not distributed across the membranes of M. abscessus and, instead, were concentrated in some other location of the cell envelope. Both MIL and NER compounds at 10 µM caused increased fluidity in the cell wall and plasma membrane. Furthermore, NER was shown to have a remarkable ability to extract lipids from the mycobacterial cell wall. The EPR results suggest that the resistance of mycobacteria to the action of AmB must be related to the fact that this drug does not reach the bacterial plasma membrane.


Assuntos
Anfotericina B/farmacologia , Antibacterianos/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Mycobacterium abscessus/efeitos dos fármacos , Fosforilcolina/análogos & derivados , Sesquiterpenos/farmacologia , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Parede Celular/química , Parede Celular/efeitos dos fármacos , Óxidos N-Cíclicos/química , Testes de Sensibilidade Microbiana , Mycobacterium abscessus/química , Mycobacterium abscessus/metabolismo , Fosfatidilcolinas/química , Fosforilcolina/farmacologia , Marcadores de Spin , Ácidos Esteáricos/química
20.
Eur J Pharm Sci ; 168: 106048, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34699938

RESUMO

Nanostructured lipid carriers (NLC)-loaded with lopinavir (LPV) were developed for its iontophoretic transdermal delivery. Electronic paramagnetic resonance (EPR) spectroscopy of fatty acid spin labels and differential scanning calorimetry (DSC) were applied to investigate the lipid dynamic behavior of NLC before and after the electrical current. In vitro release and permeation studies, with and without anodic and cathodic iontophoresis were also performed. NLC-LPV had nanometric size (179.0 ± 2.5 nm), high drug load (∼x223C 4.14%) and entrapment efficiency (EE) (∼x223C 80%). NLC-LPV was chemically and physically stable after applying an electric current. The electrical current reduced EE after 3 h (67.21 ± 2.64%), resulting in faster LPV in vitro release. EPR demonstrated that iontophoresis decreased NLC lipid dynamics, which is a long-lasting effect. DSC studies demonstrated that electrical current could trigger the polymorphic transition of NLC and drug solubilization in the lipid matrix. NLC-LPV, combined with iontophoresis, allowed drug quantification in the receptor medium, unlike unloaded drugs. Cathodic iontophoresis enabled the quantification of about 7.9 µg/cm2 of LPV in the receptor medium. Passive NLC-LPV studies had to be done for an additional 42 h to achieve similar concentrations. Besides, anodic iontophoresis increased by 1.8-fold the amount of LPV in the receptor medium, demonstrating a promising antiviral therapy strategy.


Assuntos
Nanopartículas , Nanoestruturas , Portadores de Fármacos , Iontoforese , Lipídeos , Lipossomos , Lopinavir , Tamanho da Partícula , Absorção Cutânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...